Hyper-X Flight Engine Ground Testing for X-43 Flight Risk Reduction

Lawrence D. Huebner, Kenneth E. Rock, Edward G. Ruf,
David W. Witte, and Earl H. Andrews, Jr.
NASA Langley Research Center
Hampton, VA

AIAA/NAL-NASDA-ISAS 10th International Space Planes and Hypersonic Systems and Technologies Conference April 24-27, 2001

Kyoto, Japan

NASA

Langley Research Center

Outline

- X-43 First Flight Key Events
- Presentation Objectives
- Facility Description/Test Conditions
- Model Description
- Test Summary
- Component/Subsystem Verification/Validation
- Test Highlights Video
- Summary

X-43 First Flight Key Mission Events

Objectives

- Discuss X-43 components and subsystems that were verified and validated during Mach 7 ground testing in a flight-like environment
- Present relevant data to support success of testing
 - vehicle force and moment increments
 - propulsion/airframe integration
- Present key issues verified in current test that will be addressed in future scramjet-powered vehicle development
 - restart following engine unstart
 - use of ablative TPS in engine flowpath

NASA Langley 8-Foot High-Temperature Tunnel

HXFE/VFS Simulated Freestream Conditions

Simulation	Low q _∞	Flight q _∞	Target Flight	High q _∞
p _{comb} (psig)	1000	1585	atmospheric	2000
T _{comb} (°R)	3350	3350	air	3350
M_{∞}	6.84	6.92	7.00	6.87
p _∞ (psia)	0.140	0.211	0.204	0.263
q _∞ (psf)	647	1000	1000	1230
T _∞ (°R)	434	423	408	434
H _t (BTU/lb _m)	1064	1052	1052	1064

Hyper-X Flight Engine/Vehicle Flowpath Simulator (HXFE/VFS)

HXFE/VFS Installation Image

Mach 7 Hyper-X Flight Engine Image

Test Summary

- Installation in tunnel began August 4, 1999
- First successful run on August 25, 1999
- Fourteen unfueled runs
 - inlet flowfield characterization
 - cowl-door actuation
- Forty fueled runs
 - engine performance and operability
 - closed-loop active feedback control for flight engine fueling
 - boundary-layer effects (thermal and geometric)
 - dynamic pressure effects
 - angle of attack (0°, 2°, 4°) and sideslip angle (0°, 1°, 3°) effects
 - engine unstart/restart capability

HXFE/VFS Flight/Flight-like Subsystems

- Forebody Boundary-layer Trips
- AETB-12 TPS Tiles on Forebody
- Engine Integrity
- Cowl and Sidewall Leading-Edge Cooling
- Cowl Actuation and Inlet Starting
- Longitudinal Wing-Gap Heating
- Propulsion Subsystem Control (PSC)
 - Hardware and Software Requirements
 - Control System
 - Ignitor and Fuel System
 - Flowpath Sensors
 - Control Law Verification
 - Ignition and Transition to Hydrogen Fuel
 - Engine Unstart Prevention

Forebody Boundary-Layer Trips

Forebody TPS and Engine Leading-Edge Cooling

• AETB-12 TPS Tiles

- same material covers majority of X-43
- withstood multiple
 exposures to
 flight-like
 aerothermal loads
 with no
 degradation
- successful pre-test flight-like tile repairs
- flight-like
 instrumentation
 installation and
 data acquisition

NA SA

Engine Leading-Edge Cooling

- cowl and sidewalls
- cooling passages
 identical to X-43
- identical pressure and mass flow rate to X-43
- no problems encountered

Langley Research Center

Cowl Actuation and Inlet Starting

Longitudinal Wing-Gap Heating

PSC Development, Verification, and Validation

• Ensures thorough testing of subsystem hardware and software elements

Ignitor and Fuel System

to bodyside injectors ______ to cowlside injectors

Ignitor venturi flowmeter-

Ignitor control valve and actuator-Ignitor/fuel mixing manifold

Fuel venturi flowmeter

- Low-pressure side
- Flight-like:
 - Plumbing
 - Line lengths
 - Line diameters
 - Fittings
 - Control valves
 - Flowmeters
 - Sensors
 - Fuel injectors
 - Delivery pressures

Langley Research Center

Engine Unstart Prevention

X-43 Force and Moment Increments

HXFE/VFS Composite Schlieren Images

Aftbody SiO₂ Deposits

Aftbody Oil-Flow Patterns

Aftbody ΔC_p Due to Cowl Opening

 M_{∞} =6.92, q_{∞} =1000 psf

Langley Research Center

Aftbody △C_p Due to Fueling

 M_{∞} =6.92, q_{∞} =1000 psf

Pre- and Post-Run BLA-20 TPS Images

NA SA

